1. Problem Space

![Cloud Resource Prediction Models](image)

Resource Scaling: Choose Model with Highest Prediction Accuracy.

Overcommitment Policies: Choose Model that predicts Max value.

Problem Statement: Can we select a model based on the pattern of resource usage?

2. Proposed Approach

- **1. Label Creation**
- **2. Time Series Similarity**
- **3. Model Selection**

![Input Task](image)

Metric

- Time

Label = Full Time Series

3. Pattern-based Comparison

Data Representations
- Numeric: Time Series Data “as-is”
- Image: Graman Angular Difference Field (GADF)

Comparison Metrics
- L2 Norm
- Dynamic Time Warping (DTW)
- Structural Similarity Index Measure (SSIM)

Approach - Combinations
- I. Numeric – L2
- II. Numeric – DTW
- III. GADF Image - L2
- IV. GADF Image - SSIM

Methodology: Run k-means to cluster the time series of the tasks creating 1 cluster per job.

- When using **homogeneous** (very similar) tasks, the clustering is successful for **all approaches**.

4. Model Selection

Approach
- Numeric – L2
- Numeric – DTW
- GADF Image – L2
- GADF Image – SSIM

Models selected across approaches to predict task 11 of job 113.

- Model 380, 382 deliver 10% - 40% error with probability 0.8.

5. Main Insights

2. Pattern-based comparisons using **distance-based metrics** are effective for very similar timeseries, but **break** when patterns become **slightly dissimilar** (e.g., time shifted), even with more sophisticated approaches (DTW, image-based). Opportunity for new contributions!

6. Future Directions

- **Expand dataset** to more jobs, tasks, patterns, resources, and finer granularity across time windows.
- **Explore more sophisticated ML-based pattern matching.**
- **Use explainable AI** to understand model generalizability.
- **Explore other forecasting models** (ML, statistical).
- **Integrate** pattern-based model selection in use case e.g., resource autoscaler, overcommitment policy.

References

![Scan for Paper](image)

![Scan for Code](image)