Is Machine Learning Necessary for Cloud Resource Usage Forecasting?

Georgia Christofidi, Konstantinos Papaioannou, Thaleia Dimitra Doudali
IMDEA Software Institute, Madrid, Spain

1. Problem Space

Challenge 1: Low resource efficiency in the Cloud.

User: Asks: X > Y (Uses)

Approach: Future Resource Usage Forecasting.

Input: Past Resource Usage X1, X2, ..., Xn

Forecasting Models
- (ML, Statistical, Heuristic, Hybrid)

Output: Future Resource Usage Xn+1, Xn+2, ..., Xn+k

Problem: Achieving High Accuracy in Forecasting.

- Accurate Forecasts can:
 - Resource Efficiency
 - Costs
 - Energy Efficiency
 - Application Performance

2. Existing Approach

Use case: Global Active Power Consumption

Input: Past Resource Usage

Output: Future Resource Usage

Usecase: Cloud Workloads

Forecasting Models
- Long Short-Term Memory (LSTM)

Approach: Revisit existing systems and study the simple mechanisms to the extent possible.

Our Insight: LSTM predictions resemble the previous timestep of the timeseries.

- Do we need ML to produce such “shifted” predictions?

3. Proposed Approach

Persistent Forecast

- Predict the value at the previous timestep.

We observe very low error values that depend on the resource type.

- Long Short-Term Memory (LSTM)

Frequency

- Physical/ Virtual Machine

Resource Levels

- Workload

Resource Types

- Hourly/ Daily/ Weekly Windows

Scan for code and paper:

- Alibaba Dataset
- Google Dataset

Takeaway: Persistent Forecast is highly accurate for cloud data, across resource types, levels of use and measurements.

4. Experimental Results

Sensitivity to the length of the time window

Takeaway: Small sensitivity to the time window. Opportunity for low error when window and patterns align.

Our Insight: The persistent forecast is effective because resource usage values of cloud workloads and servers, persist over time.

5. Summary

Open Questions

1. When to use ML?
 - exact use case data pattern system’s performance and decision-making

2. Which ML method to use, when necessary?
 - Probably not LSTMs
 - Other-state-of-the-art ML methods for timeseries forecasting

Suggestions

1. Revisit existing systems and study the data patterns:
 - Values persist over time?
 - Try the Persistent Forecast

2. Insightful and judicious use of ML, simple mechanisms to the extent possible.

All code is open source and available on Github.

Resources

- GitHub
- ![GitHub Link](https://github.com/username/repo)

- Machine Learning is not always necessary for Cloud Resource Usage forecasting.

- ![Image](https://example.com/image)