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Challenge: Increased Carbon Emissions
due to exponential growth of Computing.
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Solution: Spatial and Temporal Workload Shifting. ' emporal snitting additional budget to
. . o rent remote resources
[3] Spatial Shifting Temporal Shifting in greener regions
. Performance '
| | I Pause with no strong latency AWareness
™8 Fossil-fuel-heavy regions requirements (e.g., batch jobs) .
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Workload types of jobs can L
Migration be shifted in time. Takeaway: Optimizing
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Sources [1]: Beyond Efficiency: Scaling Al Sustainably Not all workloads can wait! Cost + Performance =
[2]: https://towardsdatascience.com/the-carbon-footprint-of-gpt-4-d6c676eb21iae Harder than it looks.

[3] https://app.electricitymaps.com/map/72h

1. Experimental Methodology

Usecase: Company with entire
cloud-edge infrastructure Spain Es 206 gCO2eq/kWh

deployed in Spain.
Sweden se | 20 gCO2eqg/kWh
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Goal: Quantify the additional cost ($) to rent
resources in Sweden to reduce the carbon footprint.

2. Experimental details

2. Experimental Methodology

The lower the
better

Applications (using the Microservices =~ Workload @10 S
benchmark DeathStarBench)

Social Network Media streaming +1,000 requests to each application
Uleara aane Movie platform where * Time steps follow a Poisson
requests to users can log in and distribution, emulating multiple

compose posts. upload movie reviews. concurrent users

o5 3. Preliminary Results

1. Composing and uploading a
movie review is more ,
computationally demanding SOC.'al Netvvo.rk 949ms | o
than creating a social media post. | Media Streaming 26.08 ms -,@:
“10% 2. Running the

applications in Sweden,

ISa much more
s Social Network (Spain) 72.72 sustalnablle SOILILIO
s Social Network (Sweden) 7.06 —:@:—
E Media Streaming (Spain) 166.17 3. Hosting the media
S Media Streaming (Sweden) 16.13 streaming in Sweden

will lead to a higher
4. Double the budget is needed for similar infrastructure in impact in sustainability.

a different country. Users from Spain will connect first to the

closest DC » the application runs on both locations. *Source: Amazon EC2

On-Demand Pricing.
Hourly rate in the eu-

Takeaway: Become greener - south-2 region for
More money. Spain, eu-north-1
Choose wisely what to offload! region for Sweden.

We need an application-specific solution for the carbon - cost trade-off.

1. Minimizes
emissions with
spatial shifting

Carbon -
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Plans for Amazon EC2).
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3. Minimizes the overall ®
cost of the
Infrastructure (Data J
from On-Demand Cost - L“

4. Proposed Approach

2. Minimizes idle
resources by predicting

- Resource

future resource usage. CaRE prioritizes the Current Application:

optimization metrics Microservices

according to the

specific application Future Work:
requirements and Extend to serverless

the user preferences. applications.

4. Minimizes network Takeaway: CaRE jointly optimizes the
and request carbon, resource and cost efficiency of the

- Performance  cyccution latency, workloads, complying with SLASs.

enforcing the SLAs.

1. Accurately Predicting Resource Usage.
Proposed Approach: Persistent Forecast.

5‘ Challenge 3. Handling Anomalies with a Two-Model Approach. E E

When the persistent forecast accuracy drops
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We deploy anomaly detection techniques,

A $0.8 8 hours below a threshold, we enter an anomalous state.
ssume resource usage p
repeats itself periodically. ggi Fallback Mechanism that predicts:
. > « Duration of the anomaly.

Highly accurate on cloud data ~ User behaviours follow 502 | - » Resource usage during this time.

with average prediction error 7%. predictable cycles. >0 10 20 30 40 50
Time (hours)
—— , Persistent Forecast  Accyracy OK. Persistent Forecast

2. Limitations of the Persistent ~0.013 accuracy < threshold. accuracy < threshold.
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to predict highly dynamic resource usage.
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40 = For the anomaly detection model we will explore a variety of ML
@ and non-ML methods commonly used for anomaly detection.
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