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Challenge: Increased Carbon Emissions 
due to exponential growth of Computing.

Key drivers: 
• ML applications
• Generative AI 
• Video streaming

AI 
Model 

Carbon Impact of Training* Real-word equivalent example

GPT-3  500 metric tons of CO2eq.[1] 500 round-trip flights from Madrid 
to New York for one passenger.

GPT-4 12,456 - 14,994 metric tons CO2eq 
(estimated).[2]

50-60 fully loaded Boeing 747 
flights.

*Training only accounts for 43% of lifecycle carbon emissions. [1]Solution: Spatial and Temporal Workload Shifting.

Fossil-fuel-heavy regions

Greener areas 

Workload 
Migration

[3] Spatial Shifting

Pause with no strong latency 
requirements (e.g., batch jobs)
 

Resume when green energy available.

Temporal Shifting

Sources [1]: Beyond Efficiency: Scaling AI Sustainably
[2]: https://towardsdatascience.com/the-carbon-footprint-of-gpt-4-d6c676eb21ae 
[3] https://app.electricitymaps.com/map/72h

Problem: Resource, Performance, and Cost 
are compromised when reducing CO2.

Resource 
Awareness

Idle!

• Resource Waste
• Energy Inefficiency
• Increased Cost

Temporal Shifting

Cost Awareness

Small national 
companies need 

additional budget to 
rent remote resources 

in greener regions.

Spatial Shifting

Takeaway: Optimizing 
Carbon + Resource + 
Cost + Performance = 
Harder than it looks.

Performance 
Awareness

Not all workloads can wait!

Only specific 
types of jobs can 
be shifted in time.

Goal: Quantify the additional cost ($)  to rent 
resources in Sweden to reduce the carbon footprint.

Usecase: Company with entire 
cloud-edge infrastructure 

deployed in Spain. 

Location Carbon Intesity
Spain 206 gCO2eq/kWh

Sweden 20 gCO2eq/kWh

1. Experimental Methodology

2. Experimental details

Social Network

Movie platform where 
users can log in and

upload movie reviews.

Users send 
requests to 

compose posts.

Media streaming

Applications (using the Microservices 
benchmark DeathStarBench)

• 1,000 requests to each application
• Time steps follow a Poisson 

distribution, emulating multiple 
concurrent users 

Workload 10 minutes

The lower the 
better

App (Location) Carbon (mgCO2eq) Local ($/hr)
Social Network (Spain) 72.72 0.0912

Social Network (Sweden) 7.06 0.0864
Media Streaming (Spain) 166.17 0.0456

Media Streaming (Sweden) 16.13 0.0432

Application AVG Latency
Social Network 9.49 ms

Media Streaming 26.08 ms

*

1. Composing and uploading a 
movie review is more 

computationally demanding 
than creating a social media post.

2.89x

~10x 2. Running the 
applications in Sweden, 

is a much more 
sustainable solution.

4. Double the budget is needed for similar infrastructure in 
a different country. Users from Spain will connect first to the 

closest DC → the application runs on both locations.

Takeaway: Become greener → 
More money. 

Choose wisely what to offload!

We need an application-specific solution for the carbon – cost trade-off.

*Source: Amazon EC2 
On-Demand Pricing. 
Hourly rate in the eu-
south-2 region for 
Spain, eu-north-1 
region for Sweden. 

3. Hosting the media 
streaming in Sweden 
will lead to a higher 

impact in sustainability.

~2x

1. Minimizes 
emissions with 
spatial shifting 

(Data from 
Electricity Maps).

2. Minimizes idle 
resources by predicting 
future resource usage.

4. Minimizes network 
and request 

execution latency, 
enforcing the SLAs.

3. Minimizes the overall 
cost of the 

infrastructure (Data 
from On-Demand 

Plans for Amazon EC2).

Carbon Resource

Cost Performance

CaRE

w1 w2

w3 w4

Takeaway: CaRE jointly optimizes the 
carbon, resource and cost efficiency of the 

workloads, complying with SLAs.

CaRE prioritizes the 
optimization metrics 

according to the 
specific application 
requirements and 

the user preferences.

Current Application: 
Microservices

Future Work: 
Extend to serverless 

applications.

1. Accurately Predicting Resource Usage.
Proposed Approach: Persistent Forecast. 

Assume resource usage 
repeats itself periodically.

User behaviours follow 
predictable cycles.

8 hours

2. Limitations of the Persistent 
Forecast – hard to predict patterns.

We deploy anomaly detection techniques, 
to predict highly dynamic resource usage.

Highly accurate on cloud data 
with average prediction error 7%.

3. Handling Anomalies with a Two-Model Approach.

When the persistent forecast accuracy drops 
below a threshold, we enter an anomalous state.

Fallback Mechanism that predicts:
• Duration of the anomaly.
• Resource usage during this time.

Normal 
State

Persistent Forecast 
accuracy < threshold.

Accuracy OK.

Anomalous
State

Persistent Forecast 
accuracy < threshold.

Normal State Anomalous
State

. . . 

For the anomaly detection model we will explore a variety of ML 
and non-ML methods commonly used for anomaly detection.

2. Experimental Methodology 
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