

Flash Detection Software

Theory Section

Stefanos Achlatis, Georgia Christofidi IAASARS, National Observatory of Athens, Greece <u>sachlatis@noa.gr</u>

Project Duration: October 2021 – September 2022

ESA Contract No. 4000135574/21/NL/IB/gg

Why we need an open-source tool for lunar impact flash detection?

More impact flashes caught on camera

- Moon is bombarded sporadically with a rate of **7.5 met/hr**, while
 Earth with a rate of ~100 met/h (mesosphere meteors) and with a rate of ~175 met/h at LEO
- Observe Moon for impact flashes at 0.1-0.45 lunar phases ~5-8 nights/month ~ 20'- 4.5 hr

Suggs et al. (2012):	1.03 × 10 ⁻⁷ flash/hr/km ²
Rembold & Ryan (2015):	1.09 × 10 ⁻⁷ flash/hr/km²
NELIOTA:	2.30 × 10 ⁻⁷ flash/hr/km ²

Cross-validation of impact events across users

Cosmic ray could be falsely classified as an impact flash
 NELIOTA solves this problem with R, I filters

True Impact Flash

- •2 frames in R
- •4 frames in I
- •R= 6.7 mag
- •l= 6.0 mag

False Impact Flashes

More observation hours!

□ Non-sunlit side

Observation area: 3x10⁶ km²
 (in NELIOTA System Setting)

Challenges of an open-source tool for amateurs astronomers

Many different Cameras and Telescopes

- •Camera Interface
- •Camera write/read time
- •Camera video bits
- •Camera fps
- •Telescope Interface
- •Hardware Limitations in the Computer

Storage Limitations

- One night of observation in NELIOTA is about 100GB of data
- We need

simultaneous observation and detection of potential events

NELIOTA Statistics

- •194.04 hrs Lunar observation
- •152.75TB of data

Optimal observations of the moon

What is an optimal observation?

- $\ensuremath{\varnothing}$ Non-sunlit side
- Ø Phases between ~0.1- 0.5
- Ø Standard star observations every ~15 min
- $\ensuremath{\mathcal{O}}$ Clear sky, without clouds and pollution
- Ø Observations above ~20 deg

Non-Optimal observations of the moon

Ø Include sunlit side (saturation)

- Ø Phases above ~0.5 (straylight)
- $\ensuremath{\mathcal{O}}$ Air pollution and clouds
- Ø Observations below ~20 deg

The open-source tool for lunar impact flash detection

Observation and Online Detection Domain

Structure of the Tool

Offline Detection Domain

Localization Domain

Observation and Online Detection Domain

Observation and Online Detection Domain

- Observation and Online Detection Domain is a plugin program inside FireCapture
- We can find it in the "Preprocessing" area press the "None" button

🌣 PrePro	ocessing	& Plugins	
Reset	t all Filter / P	lugins	
ON / OFF	Visible		Filter / Plugin
×		Contrast	
×		Live-Stacking	
×		Average	
×		Mosaic-Helper	
		Color-Saturation	
×		Bright Object	
×		Moving Object (daytime)	
×		Moving Object (night)	
×		Planetary mask	
×		FDS v0.09.1	
2	1	FDS v0.09.1	
×		Planetary mask	

Online Detection Workflow

Online Detection - Results

- You will be notified by a logger that you have captured something
- Go to the "writing path" and check what is written
- You will have multiple events detected during the night, most of them will be cosmic ray

Online Detection Processing Phase

Before Processing

Online Detection Examples

Offline Detection Domain - Motivation

- Each of the observation folders contains up to 50-200 events
- Offline detection will inform us quickly which of them could be impact flashes, and which of them are satellite, cosmic rays

Offline Detection Domain - Workflow

- For each event, the program will read some essential information from the metadata file
- Select a Region of Interest around the event
- Perform Levenberg–Marquardt algorithm and fit a 2D Gaussian distribution on the event
- Depending on the characteristics of the Gaussian the program classifies the event

How to use

- Offline Detection could take the entire directory of the observations of the day, and not each event separately
- Just select the desired directory

Detection Star	ndalone Tool	- 0	×		
Choose	e the operation you wo	uld like to perform	Detection	1	3
Event	Detection	Event Localization		Edit Parameters Select Dark Image for Calibration (Optional)	
				Select Flat Image for Calibration (Optional) No directory chosen	
i			Specify	the constant for the flat and dark calibration (Optic	onal)
			Plea	Select Directory No directory chosen Specify ROI Dimension (Optional)	

Start Detection

Offline Detection Domain - Results

А	В	C	D	E	E	G	H		J	K	L	М
Event Directory Name	FWHM x	FWHM y	Impact Flash	Satellite	Hot Pixel	Cosmic Ray	Event outside of the limb	Result:				
flash_1	3,571	3,198	TRUE	FALSE	FALSE	FALSE	FALSE	Impact flash detected. (Coordinates: 1006, 721).				
flash 6	2,255	2,453	TRUE	FALSE	FALSE	FALSE	FALSE	Impact flash detected. (Coordinates: 410, 235).				
event_5_2022.05.18.14.4	2,399	22,761	FALSE	TRUE	FALSE	FALSE	FALSE	Satellite detected. (Coordinates: 747, 302).				

- In the working directory, you will find a csv file which has the classification of each event
- $\hfill\square$ You can find more information

Localization - Motivation

- Find the Selenographic Coordinate of the impact flash
- The methodology is based on the work of Avdellidou et al. 2021

Localization - Workflow

Results of automatically circle fitting

Automatic Correlation

- The image will be rotated so most of the points of our input image will fit in the binary lunar image
- This task could be performed manually too

Change rotation angle (based on unrotated image):

Localization Results

Thanks for your attention