

Flash Detection Software

Workshop Section

Capture your own Impact Flash

Stefanos Achlatis, Georgia Christofidi IAASARS, National Observatory of Athens, Greece <u>sachlatis@noa.gr</u>

Project Duration: October 2021 – September 2022

ESA Contract No. 4000135574/21/NL/IB/gg

Installation

What Operating System do you have?

□ Our Software works for all 3 major OS

Online Detection Domain:

- □ Visit FireCapture Site:
 - <u>http://www.firecapture.de/</u>
- Scroll down and download
 FireCapture Version based on your
 OS
- □ Then install FireCapture

Online Detection Domain:

□ Download our FDS Plugin

- Download <u>this</u> jar
- □ Name: FDS.jar
- Open FireCapture Folder
- □ Go to the "Plugins" folder (Fig. 1)
- Open x64 or x86 folder depending on your installation (Fig. 2)
- □ Create a folder (Fig. 3)
 - Name: FDS
- Inside this folder place our plugin "FDS.jar" (Fig.4)

Name	~	
📮 FDS		

Name	^	
🛓 FDS		

Simulations:

- For this workshop we create some videos with impact flashes or other events.
- Download these videos:

□ <u>Here</u>

Example of such video

Simulations:

- Now we will place the simulations in Firecapture
- $\hfill\square$ Go to the FireCapture folder
- □ Go to the "testImages" folder (Fig. 1)
- □ Open the "moon" folder (Fig. 2)
- □ Delete the existed "moon.avi" video
- $\hfill\square$ Take the first video
 - □ FDS_moon_1.avi
- Place it in this folder
- $\hfill\square$ Rename the video (Fig. 3) :
 - □ Name: moon.avi

Let's start

□ Open FireCapture and select Dummy Mode

 $\hfill\square$ If you had a camera, you would choose your real camera

	Select your camera in	terface	×
	ZWO	Point Grey	TIS / Skyris / NexImage
	Basler GigE	Basler USB	Basler Firewire
1ode camera	IDS Imaging	QHY	Allied Vision
	NET FOculus	Altair GPCAM	ASCOM

Let's start

- □ Let's set up our plugin
- □ In the "Preprocessing" area press the "None" button
- □ In the pop-up window select the FDS

🌣 PrePro	ocessing	& Plugins	
Reset	t all Filter / P	lugins	
ON / OFF	Visible		Filter / Plugin
×		Contrast	
×		Live-Stacking	
×		Average	
×		Mosaic-Helper	
		Color-Saturation	
×		Bright Object	
×		Moving Object (daytime)	
×		Moving Object (night)	
×		Planetary mask	
×		FDS v0.09.1	
2	J	FDS v0.09.1	
×		Planetary mask	

FireCapture V2.6.08 DummyCam (1=20	.2-C)						
Image	*	MAX	2 78 %	 £ 50% £ 100%	200% 🏂	6	+
16 Bit Bin 2x Max (1080x1280)		Zoom: 78%					
O ROI 300 x 300							
Control	*						
Gain	-0 3600 Ç 🗌 2						
Exp. (ms)O	0.000 🗘 🗆 💠 🗸						
Gamma 🔲 🖂 O	100 🗘 💼						
🏘 More 👻 1.00 - 200 ms							
Capture	*						
2022-07-29-1640_0-R-Moon							
Moon 😝 R							
No limit	SER						
Status	* 🗆 🚳 🗸						
FPS (max/actual) 🚥	1428.57						
Captured/Saved 0	0						
RAM 819 MB HDD 8,70	15 MB						
Histogram	×						
Options	*						
Histogram Ephems							
AutoAlign Align-Box							
Reticle FocusHelp							
CutOut Autoguide							
Darkframe FlatField							
Flip X Flip Y	T	State State					
Debayer							
Invert							
Settings	*						
PreProcessing	~						
None							

600

00000

	PreProcessing		*
		FDS v0.09.1)
	Threshold is: 122		
	«	0	»
		Frames: 442278 Events:	0 Time: 0[ms]
		Status: PAS	SIVE Stage: A
		Press to start	
luo			

Let's start

□ Select a Threshold value

Then press the button "Press to start"

A proper threshold value is important. The program will capture the event only if at least one pixel of the frame has value greater than the threshold (in the difference image).

You can change this parameter, at any point during the observation.

Setting a big threshold value will lead to "miss" some events.

On the other hand, setting a small threshold value will cause false positives.

Set the proper value, based on the weather conditions and the system.

Logger

- During the whole process make sure to look the "Logger"
- Logger will print useful information about the process
 - Will inform you if you have captured any event
 - Will inform you about some stats of the event

FDS Logger: FDS v0.09.1	<u>89</u>	\times
Logger position: 0, 0		
FdsProperties constructor		
FdsProperties: Get the properties from the file		
FdsProperties: get properties not changeable through the dialog GUI		
RESET fds.event.frames.minimum to '1'		
RESET fds.event.frames.maximum to '100'		
RESET fds.event.aveframe.alpha.minimum to '0.1'		
RESET fds.event.aveframe.alpha.maximum to '0.9'		
RESET fds.logger.function.code to '0'		
NullPointerException in: ./plugins/FcPluginFds.properties fds.event.record.format RESET fds.event.record.format to 'DAT'		
in: ./plugins/FcPluginFds.properties fds.event.record.dir		
RESET fds.event.record.dir to 'C:\Users\stefo'		
RESET fds.event.frames.before to '5'		
RESET fds.event.frames.after to '5'		
RESET fds.event.aveframe.alpha to '0.35'		
Created properties file: /plugips/FcPlugipFds properties		

Parameters

- Select how many frames before and after the impact you would like to capture
- In which format you would like to capture the frames: png, fits, or both

d Frames			Detection algorith	m parameters
5	۸ ۷]	Average frame alpha	0.35
5	A V]		
PNG	⊖ FITS	O PNG & FITS		
C:\Users	stefo			Select
./plugins/	FcPluginFds.	properties		Select
	d Frames 5 5 5 6 PNG C:\Users ,/plugins/	d Frames 5	d Frames 5 N 5 V 5 V 6 PNG FITS PNG & FITS C:\Users\stefo ./plugins/FcPluginFds.properties	Detection algorith Detection algorith Average frame alpha Average frame alpha S V PNG O FITS O PNG & FITS C: \Users\stefo ./plugins/FcPluginFds.properties

 $\alpha < 1.0$

Location of output files

 After your first detection you will see a new folder in the location C:\Users\stefo

The new folder is named "observations"

- There sub-directories of the day will be created
- In the directory of the day, you will find enumerated all the detected events

FDS parameters					>
Event Recor	d Frames			Detection algorith	m parameters
Number of frames before	5	v		Average frame alpha	0.35
Number of frames after	5	^ V			
Event record format	PNG	⊖ FITS	O PNG & FITS		
Event records directory	C:\Users	\stefo			Select
FDS properties file	./plugins/	/FcPluginFds.p	roperties		Select
Threading	NO	O YES			

Output Files

🛛 Metadata

- □ Sequence of frames:
 - 5 (configurable parameter) before the event
 - $\hfill\square$ The frames of the event
 - 5 (configurable parameter) after the event

Metadata

In the dummy mode, metadata are dummy too

□ Timestamp is dummy

□ FPS is dummy

□ Include:

□ Timestamp

- □ Number of pixels
- Location (of pixels in the frame)
- □ Camera Information
- □ Capturing Information
- □ FPS

Event_Metadata - Notepad <u>File Edit Format View Help</u> Event Info:

The event occurred at: 2022-08-09 08:25:26.636. The recording consists of 12 frames. The event can be found at the 6th frame (filename: frame_005). The number of pixels of the event is: 8. The coordinates of the brightest pixel of the frame are: x coordinate:161, y coordinate:336. The threshold that was set from the user for capturing is: 99. The average FPS of all the recorded frames is: 6.

Camera Info:

Camera Name: DummyCam.
Pixel Size: 05.60(um).
Sensor Temperature in Celsius: 20.10.
Max Image Size: java.awt.Rectangle[x=0,y=0,width=1080,height=1280].
Region of Interest Offset: java.awt.Point[x=0,y=0].
Is 16 bit: false.
Is bin2: false.
Is colour: true.
Is threading enabled: false.

Time Information:

The timestamp of each frame is (UTC): Frame 0: 2022-08-09 08:25:25.846. Frame 1: 2022-08-09 08:25:25.998. Frame 2: 2022-08-09 08:25:26.151. Frame 3: 2022-08-09 08:25:26.304. Frame 4: 2022-08-09 08:25:26.467. Frame 5: 2022-08-09 08:25:26.636. Frame 6: 2022-08-09 08:25:27.100. Frame 7: 2022-08-09 08:25:27.100. Frame 8: 2022-08-09 08:25:27.241. Frame 9: 2022-08-09 08:25:27.516. Frame 10: 2022-08-09 08:25:27.662. The duration of the event in frames is: 2.

The coordinates of all the pixels that triggered capturing are: x coordinate:161, y coordinate:336.

Now we are ready to capture our first Lunar Impact Flash (provided by NELIOTA)

□ First easy example

First Video

 $\hfill\square$ Small duration video

- The video will play on repeat, so you will see again and again the same impact flash
- One frame impact flash (artificially set to be one frame)
- □ Set the proper threshold
 - □ Around 100

	PreProcessing		*
		FDS v0.09.1	
>	Threshold is: 104		
	«	0	

Results

- You will be notified by the logger that you have captured something
- Go to the "writing path" and check what is written
- Don't let it run for much time, the video is small and will play on repeat thus you will capture many events

Discussion

Event Info

🛛 Camera Info

🛛 Time Info

How many events did you captured?

□ Was this flash multi-frame?

Event_Metadata - Notepad

<u>File Edit Format View Help</u> Event Info:

The event occurred at: 2022-08-09 07:34:07.306. The recording consists of 11 frames. The event can be found at the 6th frame (filename: frame_005). The number of pixels of the event is: 43. The coordinates of the brightest pixel of the frame are: x coordinate:919, y coordinate:1005. The threshold that was set from the user for capturing is: 109. The average FPS of all the recorded frames is: 8.

Camera Info:

Camera Name: DummyCam. Pixel Size: 05.60(um). Sensor Temperature in Celsius: 20.07. Max Image Size: java.awt.Rectangle[x=0,y=0,width=1080,height=1280]. Region of Interest Offset: java.awt.Point[x=0,y=0]. Is 16 bit: false. Is bin2: false. Is colour: true. Is threading enabled: false.

Time Information:

The timestamp of each frame is (UTC): Frame 0: 2022-08-09 07:34:06.679. Frame 1: 2022-08-09 07:34:06.806. Frame 2: 2022-08-09 07:34:06.933. Frame 3: 2022-08-09 07:34:07.064. Frame 4: 2022-08-09 07:34:07.185. Frame 5: 2022-08-09 07:34:07.306. Frame 6: 2022-08-09 07:34:07.341. Frame 7: 2022-08-09 07:34:07.541. Frame 8: 2022-08-09 07:34:07.643. Frame 8: 2022-08-09 07:34:07.744. Frame 9: 2022-08-09 07:34:07.863. Frame 10: 2022-08-09 07:34:07.963. The duration of the event in frames is: 1.

The coordinates of all the pixels that triggered capturing are: x coordinate:921, y coordinate:1009. x coordinate:922, y coordinate:1009. x coordinate:923, y coordinate:1009. x coordinate:924, y coordinate:1009. x coordinate:919, y coordinate:1008. x coordinate:921, y coordinate:1008. x coordinate:922, y coordinate:1008. x coordinate:923, y coordinate:1008. x coordinate:923, y coordinate:1008. x coordinate:924, y coordinate:1008. x coordinate:925, y coordinate:1008. x coordinate:925, y coordinate:1008. x coordinate:919, y coordinate:1007.

Second Event (provided by NELIOTA)

□ Multi-frame video

Set-up Second Simulation

Now we will place the second event in FireCapture

- $\hfill\square$ Go to the FireCapture folder
- □ Go to the "testImages" folder (Fig. 1)
- □ Open the "moon" folder (Fig. 2)
- $\hfill\square$ Hide the existed "moon.avi" video
- $\hfill\square$ Take the second video
 - □ FDS_moon_2.avi
- Place it in this folder
- \Box Rename the video (Fig. 3) :
 - □ Name: moon.avi

Second Video

- □ Multi-Frame Video
- Now, experiment with different thresholds
- How the threshold interact with multi-frame events?

Discussion

- The duration of the event was N?
- □ What threshold did you used?

Note that you capture: 5+N+5 frames

Event_Metadata - Notepad <u>File Edit Format View Help</u> Event Info:

The event occurred at: 2022-08-09 08:25:26.636. The recording consists of 12 frames. The event can be found at the 6th frame (filename: frame_005). The number of pixels of the event is: 8. The coordinates of the brightest pixel of the frame are: x coordinate:161, y coordinate:336. The threshold that was set from the user for capturing is: 99. The average FPS of all the recorded frames is: 6.

Camera Info:

Camera Name: DummyCam.
Pixel Size: 05.60(um).
Sensor Temperature in Celsius: 20.10.
Max Image Size: java.awt.Rectangle[x=0,y=0,width=1080,height=1280].
Region of Interest Offset: java.awt.Point[x=0,y=0].
Is 16 bit: false.
Is bin2: false.
Is colour: true.
Is threading enabled: false.

Time Information:

The timestamp of each frame is (UTC): Frame 0: 2022-08-09 08:25:25.846. Frame 1: 2022-08-09 08:25:25.998. Frame 2: 2022-08-09 08:25:26.151. Frame 3: 2022-08-09 08:25:26.304. Frame 4: 2022-08-09 08:25:26.467. Frame 5: 2022-08-09 08:25:26.636. Frame 6: 2022-08-09 08:25:27.100. Frame 7: 2022-08-09 08:25:27.100. Frame 8: 2022-08-09 08:25:27.241. Frame 9: 2022-08-09 08:25:27.379. Frame 10: 2022-08-09 08:25:27.516. Frame 11: 2022-08-09 08:25:27.662. The duration of the event in frames is: 2.

The coordinates of all the pixels that triggered capturing are: x coordinate:161, y coordinate:336.

Experiment:

 Now set even smaller threshold.

□ What do we see?

Third Event (provided by NELIOTA)

□ Threading

Set-up Third Simulation

Now we will place the third event in FireCapture

- $\hfill\square$ Go to the FireCapture folder
- □ Go to the "testImages" folder (Fig. 1)
- □ Open the "moon" folder (Fig. 2)
- □ Hide the existed "moon.avi" video
- $\hfill\square$ Take the third video
 - □ FDS_moon_3.avi
- Place it in this folder
- $\hfill\square$ Rename the video (Fig. 3) :
 - Name: moon.avi

Third Video

FDS parameters						\times
Event Reco	rd Frames			Detection algorith	m parameters	
Number of frames before	5	٨)	Average frame alpha	0.35	
	-	v				
Number of frames after	5	^ V]			
Event record format	PNG	⊖ FITS	O PNG & FITS			
Event records directory	C:\Users	\stefo			Select	
FDS properties file	./plugins	/FcPluginFds.	properties		Select	
Threading	O NO	YES				

□ This is a bigger video

- $\hfill\square$ We will use "threading"
- Threading is enabled when a detection is occurred

Experiment

- □ In order to see the effect of threading set the parameters as shown in the figure
- □ In this way we will make the writing process slightly slower, and you will see that the FireCapture will "lag" with the impact flash frame

FDS parameters					
Event Reco	rd Frames			Detection algorith	m parameters
Number of frames before	10	٨		Auerago framo aleba	0.25
Number of frames before	10	v	0	Average traine alpria	0.55
Number of frames after	10	٨]		
Number of frames after	10	v]		
Event record format	O PNG	⊖ FITS	PNG & FITS		
Event records directory	C:\Users	\stefo			Select
FDS properties file	./plugins	/FcPluginFds	.properties		Select
Threading	O NO	O VES			

□ Why?

In which cases "threading" could be a problem?

Discussion

Discussion:

- Threading could be a problem in the following cases:
- When the moon is "shaking" due to bad weather or telescope movement if sunlit parts are included. This will lead to many fake detections.
- □ What about satellites?

Question

 If threading was enabled, will the movement of the lunar limb cause fake detection?

Question

- □ If threading was enabled, will a fast movement of the telescope cause a fake detection? Why?
- □ If the threading was disabled, and no fast movement happened. Will we have a fake detection? Why?

ZWO ASI290MM (T=36.1°C) USB3.0

Exp. (ms utoGair 🔅 More 🕚

PS (max/actual

aptured/Save

Histogra

AutoAlion

CutOut

Darkfran

.

PreProcessin

shold is: 30803

Why?

Before Processing

After Processing

Discussion

Let's see the results of the experiment. Open the frame_010.fits with a FITS viewer.

 Point at the bright side, see that the value of the pixels in this region is 255.

FDS parameters Х Event Record Frames Detection algorithm parameters A Number of frames before 10 Average frame alpha 0.35 V ٨ Number of frames after 10 V PNG & FITS Event record format O PNG ○ FITS C: Users stefo Event records directory Select Select FDS properties file ./plugins/FcPluginFds.properties NO ○ YES Threading

SAOImage ds9

View File Edit Frame Bin Zoom Scale Color Region WCS Analysis Help C:\Users\stefo\observations\2022.08.09\event_1_2022.08.09.12.15\frame_010.fits File Object Value 255 WCS 5.47506 172.416 Physical 172.416 Image 5.47506 0.328649 0 Frame 1 view file edit frame bin zoom scale color zoom out zoom fit zoom 1/4 zoom 1/2 zoom in

Fourth Event (provided by NELIOTA)

Impact Flash

Set-up Fourth Simulation

- Now we will place the fourth event in FireCapture
- $\hfill\square$ Go to the FireCapture folder
- □ Go to the "testImages" folder (Fig. 1)
- □ Open the "moon" folder (Fig. 2)
- $\hfill\square$ Hide the existed "moon.avi" video
- $\hfill\square$ Take the fourth video
 - □ FDS_moon_4.avi
- Place it in this folder
- \Box Rename the video (Fig. 3) :
 - □ Name: moon.avi

Fourth Video

- This is a video with an impact flash with small duration
- Set the proper threading and parameters

Discussion

- What threading do you use?
- Is a multi-frame impact or single-frame?

Offline Detection

- Firstly, unzip the folder
 DetectionStandalone.zip
- Open the DetectionStandalone app

DetectionStandalone					- 0
🕂 Δημιουργία -	0 lõ	⊑) 12 10 1	Ταξινόμηση ~ 🛛 🗮	Προβολή ~ •••	
$\leftarrow \rightarrow \checkmark \uparrow $	τοιχεία λήψης > De	etectionStandalone (3) > Detec	tionStandalone	~ C	🔎 Αναζήτηση σε:
✓ ★ Γ _ρ ^{Όνομα}		Ημερομηνία τροποποί	Τύπος	Μέγεθος	
📒 🛿 📓 api-ms-win-crt-he	eap-I1-1-0.dll	12/8/2022 10:42 µµ	Επέκταση εφαρμο	16 KB	
ע צ ביין איין איין צ ש מאַ api-ms-win-crt-lo	cale-I1-1-0.dll	12/8/2022 10:42 μμ	Επέκταση εφαρμο	15 KB	
📑 . 🔀 E 📓 api-ms-win-crt-m	ath-I1-1-0.dll	12/8/2022 10:42 μμ	Επέκταση εφαρμο	24 KB	
🚞 🤅 📑 api-ms-win-crt-m	ultibyte-I1-1-0.dll	12/8/2022 10:42 μμ	Επέκταση εφαρμο	23 KB	
F 📄 F 📑 api-ms-win-crt-pr	ivate-I1-1-0.dll	12/8/2022 10:42 μμ	Επέκταση εφαρμο	66 KB	
api-ms-win-crt-pr	ocess-I1-1-0.dll	12/8/2022 10:42 μμ	Επέκταση εφαρμο	16 KB	
🗸 👝 Oı	ntime-I1-1-0.dll	12/8/2022 10:42 μμ	Επέκταση εφαρμο	19 KB	
> 🛅 1 📓 api-ms-win-crt-sto	dio-I1-1-0.dll	12/8/2022 10:42 μμ	Επέκταση εφαρμο	21 KB	
> 🚞 🛿 📓 api-ms-win-crt-sti	ring-I1-1-0.dll	12/8/2022 10:42 μμ	Επέκταση εφαρμο	21 KB	
Y 💻 Αι 📑 api-ms-win-crt-tir	me-I1-1-0.dll	12/8/2022 10:42 μμ	Επέκταση εφαρμο	17 KB	
> 🔀 E api-ms-win-crt-ut	ility-I1-1-0.dll	12/8/2022 10:42 μμ	Επέκταση εφαρμο	15 KB	
> 🔀 🖉 DetectionStandal	one	12/8/2022 10:41 μμ	Εφαρμογή	20 KB	
> 🥅 [🔄 🔄 DetectionStandald	one	12/8/2022 10:41 μμ	Εικονίδιο	4 KB	
msvcp120.dll		12/8/2022 10:42 μμ	Επέκταση εφαρμο	644 KB	
> 👱 2 > 🏪 \		12/8/2022 10:42 μμ	Επέκταση εφαρμο	613 KB	
> 💱 Δί 📓 msvcr120.dll		12/8/2022 10:42 μμ	Επέκταση εφαρμο	943 KB	
> 👗 Liı 📓 packager.dll		12/8/2022 10:42 μμ	Επέκταση εφαρμο	261 KB	
ucrtbase.dll		12/8/2022 10:42 μμ	Επέκταση εφαρμο	997 KB	
vcruntime140.dll		12/8/2022 10:42 µµ	Επέκταση εφαρμο	84 KB	
50 στοιχεία 1 επιλεγμένο στοι	χείο 20,0 KB				E

 We will perform the task of offline detection in a satellite that was captured by NELIOTA

Name of the folder "FDS_offline_1"

- We will perform the task of offline detection in an impact flash that was captured by NELIOTA
- Name of the folder "FDS_offline_2"

- We will perform the task of offline detection in an impact flash that was captured by NELIOTA
- Name of the folder "FDS_offline_3"

- Offline Detection could take the entire directory of the observations of the day, and not each event separately
- Thus create a new folder and name it "FDS_Offline" and place all the above three events

- Each of these folders contains up to 50-200 events
- Offline detection will inform us quickly which of them could be impact flashes, and which of them are satellite, cosmic rays

First Step

- Offline Detection could take the entire directory of the observations of the day, and not each event separately
- Thus create a new folder and name it "FDS_Offline" and place all the above three events
- Select this directory and press
 "Start Detection"
- □ Wait a bit...

Detec	tion Standalone Tool	- 0	×	
	Choose the operation you	would like to perform	Detection	
	Event Detection	Event Localization	Edit Parameters	
			No directory chosen	
-			Select Flat Image for Calibration (Optional) No directory chosen	
			Please choose a folder first and then start the process.	
			No directory chosen Specify ROI Dimension (Optional)	
			30 Start Detection	

What will happen while waiting:

- For each event, the program will read some essential information from the metadata file
- Select a Region of Interest around the event
- Perform Levenberg–Marquardt algorithm and fit a 2D Gaussian in the event
- Depending on the characteristics of the Gaussian the program classify the event

Results

А	В	С	D	E	F	G	H	1	J	K		М
Event Directory Name	FWHM x	FWHM y	Impact Flash	Satellite	Hot Pixel	Cosmic Ray	Event outside of the limb	Result:				
flash_1	3,571	3,198	TRUE	FALSE	FALSE	FALSE	FALSE	Impact fla	sh detecte	d. (Coordin	ates: 1006,	721).
flash 6	2,255	2,453	TRUE	FALSE	FALSE	FALSE	FALSE	Impact fla	sh detecte	d. (Coordin	ates: 410, 2	35).
event_5_2022.05.18.14.4	2,399	22,761	FALSE	TRUE	FALSE	FALSE	FALSE	Satellite d	etected. (C	oordinates	: 747, 302).	

- In the directory "FDS_Offline" you will find a .csv file with the results
- Moreover, a folder named"Detection_Results" will be created
- There you can find more information about each event detection results

Localization

First Event (provided by FDS team)

 We will perform the task of localization in an impact flash that we captured using this software on 03/06/22

Choose the folder "FDS_localization_1"

Name	Date modified	Туре	Size
📄 Event_Metadata	8/9/2022 12:15 PM	Text Document	3 KB
🍔 frame_000	8/9/2022 12:15 PM	FITS File	5,403 KB
📄 frame_000	8/9/2022 12:15 PM	PNG File	1,181 KB
🍔 frame_001	8/9/2022 12:15 PM	FITS File	5,403 KB
📄 frame_001	8/9/2022 12:15 PM	PNG File	1,181 KB
🍔 frame_002	8/9/2022 12:15 PM	FITS File	5,403 KB
📄 frame_002	8/9/2022 12:15 PM	PNG File	1,181 KB
🍔 frame_003	8/9/2022 12:15 PM	FITS File	5,403 KB
📄 frame_003	8/9/2022 12:15 PM	PNG File	1,181 KB
🍔 frame_004	8/9/2022 12:15 PM	FITS File	5,403 KB
📄 frame_004	8/9/2022 12:15 PM	PNG File	1,181 KB
🎇 frame_005	8/9/2022 12:15 PM	FITS File	5,403 KB
📄 frame_005	8/9/2022 12:15 PM	PNG File	1,181 KB
🍀 frame_006	8/9/2022 12:15 PM	FITS File	5,403 KB

□ Click "Event Localization"

- Select the Directory of the event
- Input observatory information as shown in the figure
- □ Press "Start Localization"

Detection Standalone Tool -	×	
Choose the operation you would like to perform	FDS: Localization	<
Event Detection Event Localiz		
	Please choose a folder first and then start the process.	
	Select Directory	
	C:\Users\ivymo\Documents\NELIOTA\Data\000events_example\impact Fl	I
i Configurations	Enter observatory information:	
	Observatory longitude (deg): 38	
	Observatory latitude (deg): 23.7	
	Observatory altitude (km): 0.5	
	(Optional) Telescope focal length (mm): 0.0	
	Start Localization	

 After pressing "Start Localization" you will wait a bit for the program to automatically find the lunar limb.

 Accurately finding the lunar limb is important for the localization FDS: Localization in progress, please wait a moment...

Results of automatically circle fitting

Are we satisfied with the suggested lunar limb?

View Circle

View Limb

If no, change parameters of the algorithm

If no, change parameters of the algorithm

Set sd=4 and press Retry

FDS: Localization		- 🗆 X
	View circle Hide circle View limb View impact frame	
	The following circle was found:	
		Undo Redo Past attempts
Change circle color		Reset to initial circle
		AUTOMATIC CIRCLE FITTING
	a 🔰 Maraka 🖓 🖓 🐲 Karaka 🖓 🖓 👘 Karaka 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓	Change the parameters below and click Retry.
Center found (pixels):		Change sd of gaussian filter:
Radius found (pixels): 3837.31		- 4 + Info
Pixel scale (arcsec/pixels): -		Boost top and bottom % of image:
Suggested radius (pixels) based on pixel scale: -		- 0% + Info
Click on the image to get the pixel		Retry
coordinates of the point:		Reset to default
mage (pixels):		MANUAL CIRCLE FITTING
Physical (pixels):		Click on the image and then add point
mpact location		to manually select limb pixels.
Physical (pixels): X=1930, Y=885		See last 5 points
100%		
Change focus (zoom)		Add point Undo previous point
		Clear all points
		Manual fit

Set sd=6 and press Retry

Set Boost = 1%

Set Boost = 5% -> This is the best result

If you are still not satisfied with the result use Manual Fit

Manual Circle Fitting

Manual Circle Fitting

- □ Select Point on the Image
- □ Press "Add point"
- Continue until you have selected enough points
- □ Press "Manual Fit"

The best result: Set Boost = 5%

□ See "Past attempts"

Choose the best fitting circle

□ Press continue

Wait a bit

Next Step

- In this step you must answer two questions:
 - Ø Is the non-sunlit lunar hemisphere the east or the west?
 - $\ensuremath{\mathcal{O}}$ Is the image flipped?
- Use the reference Image to answer these questions

FDS: Localization							\times
View filtered	image	View reference	View impact frame				
	Filte	ered observation im	age				
Jse the reference moon picture (click View reference) to p hemisphere and identify if the observation image is flipped	oick d				1 HA 210 7 HE 1	ardel F Rosent	
Pick non-sunlit lunar hemisphere:				(K_{i})			
🔵 East							
• West							
Is the image flipped on the Y-axis? (upside down)	1						
O Yes						n an Albert San Albert	
No							
Continue							
Continue without		Service A		14 J. L			

Next Step

Is the non-sunlit lunar hemisphere the east or the west?

 $\ensuremath{\textit{Ø}}$ West

□ Is the image flipped?

Ø No

- Then press "Continue without automatic rotation"
- □ Wait... It will take a while

Next Step: Automatic Correlation

Automatic Correlation

 The image must be rotated so that Mare Humorum is in the correct spot

Suggested rotation

View rotation

Rotation: -31.53 deg

Mare Humorum is now correctly placed

 If you are satisfied with the correlation press "Complete Localization"

E FDS: Localization

Result: LONG=-28.78, LAT=-4.18 Proceed and write results to localization_logger.txt? \times

Results on the event directory:

Results on the event directory:

□ This event was also captured by NELIOTA and we can compare our localization results

Iocalization_logger.txt - Notepad

File Edit Format View Help

Localization Process Started for folder C:\Users\ivymo\[Lunar coordinates (deg): LONG=-28.86, LAT=-4.25

Other info:

Center coordinates (deg): LONG=355.79, LAT=-5.70 Angular diameter (arcmin): 29.36 Pixel scale (arcsec/pixel): -Radius calculated based on pixel scale (pixels): -Radius (pixels): 2883.14 Center of circle (pixels): X=2927.77, Y=877.40 Rotation angle (deg): -31.53 Offset (pixels): X=0, Y=0 Impact location on rotated image (pixels): 1684, 2930 Localization stopped at 2022-07-17 11:01:56.913.

Detected NEO Lunar Impact Event

ID: 20220603_182131

Second Event (provided by NELIOTA)

Event from Kryoneri telescope at 2020-06-25 18:28:18

Set-up

- We will perform the task of localization in an impact flash from Kryoneri telescope at 2020-06-25 18:28:18
- □ Choose the folder "FDS_localization_2"

Set-up

- □ Click "Event Localization"
- Select the Directory of the event
- Input observatory information as shown in the figure
- This time, give the focal length of the telescope to calculate the pixel scale
- □ Press "Start Localization"

Detection S	Standalone Tool	-		×						
Choos perfor	e the operation y m	/ou would	like to							
Event	Detection	Event Lo	ocaliz			FD	S: Localization			×
i Config	urations						Please choose a	folder first	t and then start the process. Directory	
								No directe	ory chosen	
							Ente	er observato	ory information:	
							Observatory longi	t <mark>ude (</mark> deg):	37	
							Observatory latit	ude (deg):	22.5	
							Observatory altit	ude (km):	0.9	
						(Opti	ional) Telescope fo	cal length ((mm): 3440	
					ŗ			Start Loo	calization	

FDS: Localization

Fitting Circle

- With the pixel scale, a suggested radius is calculated
- Compare with radius found by circle fitting

206.265
$$\frac{pixel \ size \ (\mu m)}{focal \ length \ (mm)} = \frac{arcsec}{pixel}$$

Continue

FDS: Localization View filtered image View reference View impact frame Filtered observation image Use the reference moon picture (click View reference) to pick hemisphere and identify if the observation image is flipped Pick non-sunlit lunar hemisphere: East West Is the image flipped on the Y-axis? (upside down) Yes No

Next Step

Is the non-sunlit lunar hemisphere the east or the west?

 \emptyset West

- □ Is the image flipped?
 - ${\it Ø}$ Yes
- $\hfill\square$ Let's do automatic rotation

Automatic rotation

Automatic rotation found a rotation angle of 21.7 degrees

Grimaldi crater is correctly matched

Comparing results with NELIOTA

Event Data				
UT Date (DD/MM/YYYY):	25/06/2020			
UT Time:	18:28:18.340			
R (mag):	7.9 ± 0.1			
l (mag):	6.7 ± 0.0			
Lunar Long (deg):	-46.5			
Lunar Lat (deg):	10.8			
Duration (sec):	0.132			

Third Event (provided by NELIOTA)

Event from Kryoneri telescope at 2018-08-08 02:29:44

Set-up

- We will perform the task of localization in an impact flash from Kryoneri telescope at 2018-08-08 02:29:44
- □ Choose the folder "FDS_localization_3"

Set-up

- □ Click "Event Localization"
- Select the Directory of the event
- Input observatory information as shown in the figure
- This time, give the focal length of the telescope to calculate the pixel scale
- □ Press "Start Localization"

Detection S	Standalone Tool	-		×						
Choos perfor	e the operation y m	/ou would	like to							
Event	Detection	Event Lo	ocaliz			FD	S: Localization			×
i Config	urations						Please choose a	folder first	t and then start the process. Directory	
								No directe	ory chosen	
							Ente	er observato	ory information:	
							Observatory longi	t <mark>ude (</mark> deg):	37	
							Observatory latit	ude (deg):	22.5	
							Observatory altit	ude (km):	0.9	
						(Opti	ional) Telescope fo	cal length ((mm): 3440	
					ŗ			Start Loo	calization	

Fitting Circle

- With the pixel scale, a suggested radius is calculated
- Compare with radius found by circle fitting
- □ Clear image, better results

206.265 $\frac{pixel \ size \ (\mu m)}{focal \ length \ (mm)} = \frac{arcsec}{pixel}$

Next Step

Is the non-sunlit lunar hemisphere the east or the west?

Ø West

□ Is the image flipped?

 ${\it \emptyset}$ Yes

This time we will not do automatic rotation

Find the right rotation

This time try to find the right rotation Use rotation of 1.2 degrees

Shift Horizontal and Vertical

Horizontal shift by 6 pixelsVertical shift by 3 pixels

Mare Crisium is now correctly placed

If you are satisfied with the correlation press "Complete Localization"

E FDS: Localization

Result: LONG=-28.78, LAT=-4.18 Proceed and write results to localization_logger.txt?

Comparing results with NELIOTA

Event Data	6
UT Date (DD/MM/YYYY):	08/08/2018
UT Time:	02:29:44.573
R (mag):	8.4 ± 0.0
I (mag):	7.3 ± 0.0
Lunar Long (deg):	60.2
Lunar Lat (deg):	26.6
Duration (sec):	0.165

Thanks for your attention