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The Problem of Cloud Resource Usage Forecasting

Low resource efficiency in the Cloud
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The Problem of Cloud Resource Usage Forecasting

Approach: Future Resource Usage Forecasting

Input: Past Resource Usage Forecasting Models

X1, X2, ..., Xn (ML, Statistical, Heuristic, Hybrid)

Challenge: Achieving High Accuracy in Forecasting @

1. I Resource Efficiency 3. M Energy Efficiency
4. 1 Application Performance
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Output: Future Resource Usage
Xn+1, Xn+2, ..., Xn+k
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> Meeting Service
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N User Experience

J Service Interruptions
J Response time
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Workload level

The Patterns of Cloud Resource Usage
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Takeaway: Patterns differ across different types of resources and levels of use (Workload vs VM).

Do we need ML to accurately predict all of the different patterns?
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Forecasting with Machine Learning

input “black box”
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LSTM s for Cloud Resource Usage Forecasting

“BHyPreC: A Novel

Bi-LSTM Based Hybrid Recurrent Neural Network Model
to Predict the CPU Workload of Cloud Virtual Machine”

IEEE Access, 2021

“Large-scale computing

systems workload

Reconciling High Accuracy, Cost-Efficiency, and Low Latency
of Inference Serving Systems
“We used LSTM for time series

EuroSys, 2023 forecasting.”

“The LSTM is especially effective at capturing
load patterns over time.”
ASPLOS, 2019

Seer: Leveraging Big Data to Navigate the Complexity prediction using parallel
of Performance Debugging in Cloud Microservices improved LSTM neural

network”
IEEE Access, 2021




Debunking the High Accuracy of LSTMs

Usecase: Cloud Workloads.
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Systems” published at EuroMLSys 2023. Twitter trace workload.

Our Insight: LSTM predictions
resemble the previous timestep of
the timeseries.

Do we need ML to produce such “shifted” predictions?
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Source: Figure 12 from blog post “Time Series Analysis,

Visualization & Forecasting with LSTM” on
https://towardsdatascience.com

8/17




Our Approach: Persistent Forecast

Let’s do something simple! :\5 0.022 Predicted Value(t) = Ground Truth(t — 5 mins) persistent forecast
P —— ground truth
For each timestep t in the S 0.02
timeseries, the prediction is the 3
value at the previous timestep. 2 0.018
)
O
> 0.016
We call this the

Persistent Forecast. 0 2 4 6 8
Time (hours)

The prediction (Persistent Forecast) is a shifted version of the ground truth.

G @

Simple, Lightweight Prediction Accuracy
Application agnostic

No overheads 9/17



Experimental Methodology

Q Extensive experimental evaluation with cloud resource usage data.
Cloud providers Resource Types Resource Levels Usage patterns
(-] Alibaba Cloud TP =
3 jeruf E [;] § Physical Machine
GoogleCloud| | ™ =F e Virtual Machine
T == bitora i\
== blbraln Workload

We calculate the prediction error of the persistent forecast.

Frequency
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Weekly Windows
aﬂﬂﬂ"
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Experimental Results — Physical Machine Level o)
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Takeaways: The Persistent Forecast is highly accurate, across resource types, levels of use and
measurements, because cloud resource usage values persist over time.
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Experimental Results -Virtual Machine Level
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—— disk-rd Memory Usage KB 5.73% 129.63 MB
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Takeaways: The Persistent Forecast gives very low average error values on the virtual machine level, less than 10%.
The tail gets larger, because patterns become more dynamic, as we mesure resource usage on a deeper level.
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Experimental Results —“Workload Level

Workload level
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Takeaways: At the workload level, patterns become even more dynamic.
CPU usage has larger prediction error values than memory usage.
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Sensitivity on the length of the time window

Persistent Forecast Time Windows

5min 10min ™ 20min MW 30min W 1lh W 2h

Persistent forecast time window = 5 minutes 6% -

Predicted Value(t) = Ground Truth(t — 5 mins) Google Dataset

Workload Level

What happens when we increase the time window?

Predicted Value(t) = Ground Truth(t — time_window) 304

Prediction Error

0% -
Avg CPU Max CPU Avg Memory Max Memory

Takeways: Low sensitivity to length of the time window.
This validates that the values persist over time and reveals potential repeating patterns in the data.
This unlocks an opportunity for lower prediction error values, if the time window matches the data periodicity.
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Lessons Learned

Resource
— Measurement
Prediction Error
i —>
of Persistent Forecast U —
I depends on MAX > AVG > MIN

Resource Level
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Machine ] d oridoa periodic and daily patterns.
T  Memory levels more stable over

time.
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Is Machine Learning Necessary for Cloud

Resource Usage Forecasting?

No.

Open questions

1. When to use ML? predictions

exact use case

system’s performance
data pattern and decision-making

2. Which ML method to use, when necessary?

Probably not LSTMs

Other state-of-the-art ML methods for
timeseries forecasting

Suggestions

1. Revisit existing systems and study the
data patterns.

Values persist over time?

\\\{

Try the Persistent Forecast

2. Insightful and judicious use of ML,
simple mechanisms to the extent
possible.

Scan for code & paper:
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